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 We discussed the motion of a charged particle in a uniform and uni-directional magnetic 
field 𝐵�⃗ , subject to the Lorentz force𝐹⃗ = 𝑞𝑣⃗ × 𝐵�⃗ , where 𝑞 is the charge of the particle.  We took 
𝐵�⃗ = 𝐵𝑧̂ and found that Newton’s second law of motion reduces to three scalar equations: 
𝑚𝑣̇𝑥 = 𝑞𝑣𝑦𝐵, 𝑚𝑣̇𝑦 = −𝑞𝑣𝑥𝐵, and 𝑚𝑣̇𝑧 = 0.  The solution for the motion along the magnetic 
field direction is simple: 𝑧(𝑡) = 𝑧0 + 𝑣𝑧0𝑡, which is uniform motion at constant velocity.  We 
solved the x-y plane motion using the trick of mapping this two-dimensional problem into the 
complex plane.  Define the complex variable 𝜂 ≡ 𝑣𝑥 + 𝑖𝑣𝑦, where 𝑖 = √−1.  The velocity of the 
particle is now represented as a point in the complex 𝜂 plane, and the solution for the velocity 
evolution with time is a trajectory in the complex 𝜂 plane.  The pair of coupled differential 
equations now reduces to a simple equation for the time evolution of 𝜂, namely 𝜂̇ = −𝑖𝑖𝑖, and 
the Cyclotron frequency is defined as 𝜔 = 𝑞𝑞/𝑚, for the charged particle of mass 𝑚. 

 Note that this use of the complex 𝜂 function is simply a mathematical bookkeeping 
device which is used to simplify the solution of the problem.  All measurable quantities must 
have two characteristics: they must be real numbers and they must be finite in magnitude.  Hence 
when we compare to experiment we must take the real and imaginary parts of 𝜂: 𝑣𝑥(𝑡) =
𝑅𝑅[𝜂(𝑡)] and 𝑣𝑦(𝑡) = 𝐼𝐼[𝜂(𝑡)]. 

 The equation is solved as 𝜂 = 𝜂0𝑒−𝑖𝑖𝑖, where 𝜂0 = 𝑣𝑥0 + 𝑖𝑣𝑦0 ≡ 𝑣0𝑒𝑖𝑖.  This equation 
represents uniform circular motion in the 𝜂-plane on a circle of radius 𝑣0 starting at an angle 𝛿 
and rotating clockwise with angular velocity 𝜔.  The initial velocities are related to 𝑣0 and 𝛿 as 

𝑣𝑥0 = 𝑣0𝑐𝑐𝑐𝑐 and 𝑣𝑦0 = 𝑣0𝑠𝑠𝑠𝑠, and 𝑣0 = �𝑣𝑥02 + 𝑣𝑦02 , 𝛿 = tan−1�𝑣𝑦0/𝑣𝑥0�.  The resulting 

description of the motion can be obtained by taking the real and imaginary parts of 𝜂 as 𝑣𝑥(𝑡) =
𝑅𝑅[𝜂] = 𝑣0cos (𝛿 − 𝜔𝜔), and 𝑣𝑦(𝑡) = 𝐼𝐼[𝜂] = 𝑣0sin (𝛿 − 𝜔𝜔). 

 The trajectory of the particle in the xy-plane can be solved by a similar method.  First 
define the complex variable 𝜉 ≡ 𝑥 + 𝑖𝑖, and relate it to 𝜂 through the time derivative: 𝜂 = 𝜉̇.  
Integrate this equation and apply the initial conditions for 𝑥 and 𝑦 to obtain 𝜉(𝑡) = 𝑟0𝑒𝑖(𝜙0−𝜔𝜔), 
where the initial positions are written as 𝑥0 + 𝑖𝑦0 = 𝑟0𝑒𝑖𝜙0 .  The particle motion is described by 
uniform circular motion around a circle of radius 𝑟0 starting at angle 𝜙0 at angular velocity 𝜔.  
The resulting motion is three dimensions is helical about the magnetic field (z) axis. 

 We considered several applications of these ideas to the cyclotron, the mass spectrometer, 
the Calutron, and Whistlers in the magneto-sphere of the earth. 

http://www.physics.umd.edu/courses/Phys410/Anlage_Fall14/The%20Cyclotron%20and%20Calutron.pdf
http://webphysics.davidson.edu/physlet_resources/bu_semester2/c13_cyclotron.html
http://www-pw.physics.uiowa.edu/space-audio/sounds/EarthWhistlers/ewhist.html
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 We recalled the definition of the total momentum 𝑃�⃗  of a many particle system as simply 
the sum over all the particles of the elementary momentum of each particle, 𝑃�⃗ = ∑ 𝑝𝛼𝑁

𝛼=1 =
∑ 𝑚𝛼  𝑣⃗𝛼𝑁
𝛼=1 .  If the particles in the system interact with each other by means of forces that obey 

Newton’s third law of motion, the change in total momentum is simply the result of a net 

external force: 𝑃�⃗ ̇ = 𝐹⃗𝑛𝑛𝑛𝑒𝑒𝑒.  This is a generalization of Newton’s second law of motion to extended 
systems.  An important consequence is that if the net external force is zero, then the total 
momentum of the many-particle system is conserved.  This is true independent of the nature of 
the forces between the particles in the system, be they electromagnetic, nuclear, conservative or 
non-conservative (i.e. forces that convert mechanical energy in to ‘heat’). 

 

 


